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Taking the view that computation is after all physical, we argue that physics, particularly
quantum physics, could help extend the notion of computability. Here, we list the
important and unique features of quantum mechanics and then outline a quantum
mechanical “algorithm” for one of the insoluble problems of mathematics, the Hilbert’s
tenth and equivalently the Turing halting problem. The key element of this algorithm is
the computability and measurability of both the values of physical observables and of
the quantum-mechanical probability distributions for these values.
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halting problem.

The fact is that quantum computers can prove theorems by methods that neither a human
brain nor any other Turing-computational arbiter will ever be able to reproduce. What if
a quantum algorithm delivered a theorem that it was infeasible to prove classically. No
such algorithm is yet known, but nor is anything known to rule out such a possibility, and
this raises a question of principle: should we still accept such a theorem as undoubtedly
proved? We believe that the rational answer ot this question is yes, for our confidence
in quantum proofs rests upon the same foundation as our confidence in classical proofs:
our acceptance of the physical laws underlying the computing operations.

D. Deustch, A. Ekert, and R. Lupacchini (2000)

1. INTRODUCTION

Supported by the convergence of many seemingly different models of com-
putation put forward independently by Turing, Post, Markov, and others (Lewis
and Papadimitriou, 1981), the Church-Turing thesis on the notion of computatbil-
ity has been formed and gained much credibility. The Church-Turing thesis which
can be phrased as

Every function which would naturally be regarded as computable can be computed by
a universal Turing machine.
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is neither a theorem nor a conjecture, for it is not and cannot even be hoped
to be proven. The thesis simply asserts some correspondence between certain
informal concepts, that of computability in this case, with certain mathematically
well-defined object, namely, the universal Turing machine.

The thesis thus imposes an upper limit of what any computing machine can
be designed to do. Can this computability notion be enlarged? In principle, there
is no reason why not. Proposals to overcome the Turing-machine limit range from
the models of mathematical principles such as continous valued neural networks
(Siegelmann, 1995), DNA computing (Calude and Paun, 2001) to those of phys-
ical nature based on general arguments Stannett (2001), relativity principles, and
quantum mechanical principles (Calude and Pavlov, 2001; Kieu, 2003a, 2003b,
2004, 2005a, 2005b).

We summarize a quantum computing model in this paper. But first we present
the quantum principles in the next section.

2. QUANTUM PRINCIPLES

What are the extra-logical features of Quantum Mechanics that would enable
an enlargement of computability? Following Feynman, we will employ in the
below the gedanken “simple” two-slit experiment, Fig. 1, to illustrate all that can
and cannot be known about, but will be manifest in the weird reality of quantum
physics. This thought experiment is about a plane wave of electrons—all of the
electrons in which have a single, well-defined value for the momentum—passing
through two slits one by one before arriving at a detection screen where each
electron can be recorded at a definite position on the screen and at a definite
moment in (laboratory) time.

Fig. 1. Plane-wave electrons passing through the two slits from the top to arrive
at the screen at the bottom: (A) The intensity pattern on the screen shows no
interference (continuous curve) when there is some mechanism to detect which
slit the electrons have passed through (dashed curves are the intensities obtained
when the other slit is closed); (B) Interference is clearly exhibited in the intensity
pattern on the screen when no record is kept of which slit the electrons have passed
through.
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2.1. Intrinsic Randomness

One important property of Quantum Mechanics is the randomness in the
outcome of a quantum measurement. Even if we prepare the initial quantum states
to be exactly the same in principle, (say, the plane-wave state for the electrons) we
can still have different and random outcomes in subsequent measurements (like
finding out which slit of the two that an electron so prepared would go through,
or where the electron would land on the final screen). Such randomness is a fact
of life in the quantum reality of our universe.

To reflect that intrinsic and inevitable randomness, the best that Quantum
Mechanics, as a physical theory of nature, can do is to list, given the initial condi-
tions, the possible values for measured quantities and the probability distributions
for those values. Both the values and the probability distributions are computable
in the sense that they can be evaluated algorithmically to any desirable accuracy
(Geroch and Hartle, 1986).2 This definition of computability of a number is suffi-
cient to interpret the number and to establish its relationship with other numbers.

On the other hand, not only the values registered in the measurement of some
measurable but also the associated probability distributions are measurable in the
sense that they can be obtained to any desirable accuracy by the act of physical
measurements (Geroch and Hartle, 1986). Normally, the values for measurable
are quantized so they can be obtained exactly; the probability distributions are real
numbers but can be obtained to any given accuracy by repeating the measurements
again and again (each time from the same initial quantum state) until the desired
statistics can be reached. That is how the computable numbers from Quantum
Mechanics can be judged against the measurable numbers obtained from physical
experiments. Thus far, there is no evidence of any discrepancy between theory and
experiments.

2.2. Implied Infinity

dRandomness is, by mathematical definition, incompressible and irreducible.
In Algorithmic Information Theory, Chaitin (1992) defines randomness by
program-size complexity: a binary string is considered random when the size
of the shortest program that generates that string is not “smaller” than the size of
the string itself. We refer the readers to the original literature for more technically
precise definitions for the cases of finite and infinite strings.

Another way to see that randomness does entail infinity is given by an
interesting argument by Stannett (2001) based on König’s Lemma which states
that any finitely-branching tree which contains infinitely many terminal nodes

2 More precisely mathematically, the wavefunctions generated by unitary (hence, bounded) time-
evolution operators are computable, and also are the eigenvalues of hermitean operators corresponding
to measured observable values. See Pour-El and Richards, 1989, and Kieu, 2005b for more details.
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must also contain an infinite path. It is pointed out that a classical algorithm
which could generate a truly random binary sequence must contain infinitely
many terminal nodes (c.f. the program-size definition for randomness). If this
algorithm is recursive then it is possible that it may run forever without halting
(that is, along the infinite path enabled by the König’s Lemma) in the generation
of some single digit of the sequence. As such, the algorithm does not really exist,
for it cannot really generate a sequence if it is stuck indefinitely at the generation
of some intermediate bit somewhere in the sequence.

In sharp contrast, we can exploit Nature to generate an infinite binary se-
quence which is random just by, say, repeatedly detecting which of the two slits
(hence the binary valuedness) the plane-wave electron goes through one by one.3

Thus, paradoxically, the quantum reality of Nature somehow allows us to
compress the infinitely incompressible randomness into the apparently finite act
of preparing the same quantum state over and over again for subsequent measure-
ments!4

Infiniteness implied by randomness is not, however, the only implied infinity
that is embraced by quantum reality. Quantum Mechanics suggests that an elec-
tron would explore an infinite number of paths in going from one point to another
(say, from one slit to a point on the screen, in which case an infinity is somehow
“contained” in the finite distance between the slit and the screen!). This infinite
multiplicity of the paths taken forms the basis for Feynmann path integral formu-
lation of Quantum Mechanics. An infinity within the finite would normally entail
inconsistency—or so would one deduce from mathematical logic. Amazingly,
quantum reality manages to maintain the required consistency by changing the
outcome of the measurement as soon as we try to detect/confirm the infinitude by
identifying the paths taken in between the finite separation. This can be illustrated
by and is in fact born out in the entirely different pattern (of no interference, see
(A) in Fig. 1.) which will be recorded on the screen if we try to detect which of
the two slits the electrons have gone through on their way there. The quantum
mechanically implied infinity is both needed for and consistent with the finitely
measured!

2.3. Quantum Logic

The above peculiar properties can be captured and manifest in the peculiarity
of Quantum Logic. In contrast to the classical logic of propositional calculus,
quantum propositions A, B, and C (each has a value of being either TRUE or

3 This possibility might seem to be unremarkable when compared to the tossing of a fabled, unbiased
coin until it is pointed out that such a coin cannot exist classically. The same conditions for tossing,
i.e., the same initial conditions, will result in the same outcomes as required by the equations of
classical physics.

4 What is finite here is the time taken to generate each and every digit of the sequence.
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FALSE) do not in general satisfy the distributivity or modularity property (Omnes,
1994; von Neumann, 1983); that is,

A ∧ (B ∨ C) �= (A ∧ B) ∨ (A ∧ C). (1)

An heuristic example of this inequality can also be found in the gedanken
two-slit experiment if we label the propositions as

• A: the detection of an electron at a position x on the final screen;
• B: the detection of an electron passing through one particular slit (say, the

left one in Fig. 1) on its way to the final screen;
• C: the detection of an electron passing through the other slit on its way to

the final screen.

With these choices and with the assumption that the electron intensity is low
enough such that on average the electrons arrive at the screen one by one (i.e., no
coincidence in the detection), the lhs of (1) represents the detection of an electron
at a position x on the screen without ever knowing which slit it has gone through
to get there. On the other hand, the rhs of (1) represents the detection of an electron
at a position x on the screen when it is known which slit of the two it definitely
has passed through on its way there. The former case experimentally gives rise to
an inteference pattern on the screen, built up by the electrons one by one as in (B)
of Fig. 1. The latter gives rise to a noninterference pattern as in (A) of Fig. 1, and
thus is distinguishable from the former. In particular, we can find a position x on
the screen where no electron is ever detected if we have interference (that is, at the
node of interference pattern). For this position x the truth value of the combined
proposition on the lhs of (1) is thus FALSE; while that of the rhs is TRUE. We
then have the inequality in (1).

3. A QUANTUM ALGORITHM

We will consider Hilbert’s tenth problem (Davis, 1982; Matiyasevich, 1993)
which appropriately rephrased, asks for a general algorithm to determine if any
given Diophantine equation has a (nonnegative) integer solution or not. A Dio-
phantine equation involves polynomial equation of many unknowns and integer
coefficients. If we can find a general algorithm asked for by the Hilbert’s tenth
problem then we will have a general algorithm for the well-known Turing halting
problem; that is, we will be able to tell if any given Turing program will halt or
not upon starting with some input.

Classically, there is no such algorithm because of the Cantor’s diagonal
arguments. For Hilbert’s tenth problem, we can see that its noncomputability orig-
inates from the lack of a general method to verify a negative statement concerning
solution of a Diophantine equation. By direct subsitution into the Diophantine
polynomial, it is straightforward to verify whether a set of integers is indeed a zero
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of the polynomial or not. But substitution cannot be used to verify in general a
negative statement that a Diophantine polynomial has no zero as it would require
the infinite task of substituting all integers! For a particular equation, such as the
Diophantine equation of the Fermat’s last theorem, one may be able to find a spe-
cific way to confirm that the equation has no solution. But that specific way is only
applicable to the particular equation in consideration, or some related equations,
and not to any Diophantine equations in general.

Nevertheless, a quantum algorithm has been proposed recently (Kieu, 2003a,
2003b, 2004, 2005a) for Hilbert’s tenth problem. We will summarize the main
points of the algorithm below and only wish to mention here that we consider
quantum algorithms are as good as any algorithms in the sense that they can be
implementable in the physical world, occupying finite time duration and finite
spatial extent and consuming finite physical resources.

3.1. Outlines

Our strategy is that we do not look for the zeroes of the Diophantine poly-
nomial in question, which may not exist, but instead search within the domain of
nonnegative integers for the absolute minimum of the square of the polynomial,
which always exists and is finite. While it is equally hard to find either the zeroes
or the absolute minimum in classical computation, we have converted the problem
to the realization of the ground state of a quantum Hamiltonian and there is no
known quantum principle against such an act. Let us consider the three laws of
thermodynamics concerning energy conservation, entropy of closed systems, and
the unattainability of absolute zero temperature. The energy involved in our algo-
rithm is finite, being the ground state energy of some Hamiltonian. The entropy
increase which ultimately connects to decoherence effects is a technical problem
for all quantum computation in general.

It may appear that even the quantum process can only explore a finite do-
main in a finite time and is thus no better than a classical machine in terms of
computability. But there is a crucial difference.

In a classical search, even if the global minimum is encountered, it cannot
generally be proved that it is the global minimum (unless it is a zero of the Diophan-
tine equation). Armed only with classical logic, we would still have to compare
it with all other numbers from the infinite domain yet to come, but we obviously
can never complete this comparison in finite time—thus, the noncomputability.

In the quantum case, the global minimum is encoded in the energy of the
ground state of a suitable Hamiltonian. Then, by energetic tagging, the global
minimum can be found in finite time and confirmed if it is the ground state that
is obtained at the end of the computation. It is the physical principles that can be
utilized to identify and/or verify the ground state. These principles are over and
above the mathematics which govern the logic of a recursive machine and help
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differentiate the quantum from the classical. Quantum mechanics could “explore”
an infinite domain, but only in the sense that it can select, among an infinite number
of states, one single state (or a subspace in case of degeneracy) to be identified as
the ground state of some given Hamiltonian (which is bounded from below).

Our proposal is in contrast to the claim in Bernstein and Vazirani (1997) that
quantum Turing machines compute exactly the same class of functions as do Turing
machines, albeit perhaps more efficiently. The quantum Turing machine approach
considered there is a direct generalization of that of the classical Turing machines
but with qubits and some universal set of one-qubit and two-qubit unitary gates to
build up, step by step, dimensionally larger, but still dimensionally finite unitary
operations. This universal set is chosen on its ability to evaluate any desirable
classical logic function. Our approach, on the other hand, is from the start based
on infinite-dimension Hamiltonians and also based on the special properties and
unique status of their ground states. The unitary operations are then followed as
the Schrödinger time evolutions.

3.2. Verification of the Ground State

The quantum algorithm is based on the key ingredients of:

• The exactitude, to the level required, of the theory of Quantum Mechanics
in describing and predicting physical processes.

• Our ability to physically implement certain Hamiltonians having infinite
numbers of energy levels;

• Our ability to physically obtain and verify some state as the desirable
ground state;

If any of these is not achievable or approximable with controllable accuracy,
the quantum algorithm simply fails and further modifications may or may not
work.

Without any known physical principles outlawing these key assumptions, we
sketch here an approach to obtain and verify the desirable ground state of the
Hamiltonian corresponding to the Diophantine polynomial in consideration.

It is in general easier to implement a hamiltonian HP than to obtain its ground
state |g〉. We thus should start the computation in yet a different and readily ob-
tainable initial state |gI 〉, which is the ground state of some other hamiltonian, HI ,
then deform this hamiltonian HI adiabatically in time into the hamiltonian whose
ground state is the desired one, through a time-dependent process represented by
an interpolating Hamiltonian H(s) = (1 − s)HI + sHP , for s changes from 0 to
1. The theorem of quantum adiabtic processes ensures that we can get arbitrar-
ily close to the ground state |g〉 of HP . Figures 2 and 3 below give an heuristic
illustration of the quantum adiabatic theorem, which can also be exploited for
optimization problems.
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Fig. 2. An example of a landscape with a small
basin attraction for the global minimum. Finding the
global minimum of such landscape is quite difficult
in general.

In order to solve Hilbert’s tenth problem we need on the one hand such time-
dependent physical (adiabatic) processes to arrive at a candidate state. On the
other hand, the theory of Quantum Mechanics can be used to verify whether
this candidate is the ground state through the usual statistical predictions from
the Schrödinger equation with a truncated number of energy states of the time-
dependent Hamiltonian H(s). This way, we can overcome the problem of which
states are to be included in the truncated basis for a numerical study of Quan-
tum Mechanics. This also reconciles with the Cantor diagonal arguments which
state that the problem could not be solved entirely in the framework of recursive
computation.

Fig. 3. Exploiting Quantum Adiabatic Theorem, we start with a
simple landscape at the reduced time s = 0 then adiabatically change
it to the final landscape in Fig. 2 at s = 1. As time evolves, the readily
available initial ground state quantum mechanically tunnels into the
sought-after ground state of the landscape of Fig. 2.
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The key factor in the ground state verification is the probability distributions,
which are both computable from a numerical study of Quantum Mechanics (that is,
with the control in the calculation to reach any desirable accuracy) and measurable
in practice (i.e., by repeating the physical processes to obtain the statistics to any
desirable accuracy). By matching the calculated with the measured, both of which
depend on the evolution time which we can vary, we then can unambiguously
identify the ground state of the final Hamiltonian. The information about the
existence of solution, or lack of it, for the given Diophantine polynomial can
be inferred through some further quantum measurements on this ground state.
Basing as well on some other criterion of probability distributions, we have also
considered a different criterion to identify the true ground state; see Kieu, 2005a,
for further details.

It is worth noting that we have here an interesting situation in which the
computational complexity, that is, the evolution time, might not be known ex-
actly before carrying out the quantum computation—although it can be estimated
approximately.

4. WHEN IS A PROOF A PROOF?

Proof, be it mathematical or general, is the means to an end: a proof is there
to explain, convince, or persuade the others (and even oneself) the “truthful” value
of certain statement(s).

A classical proof, based on classical logic, starts with a finite number of
axioms from which a finite number of subsequent/intermediate statements can be
derived with the help of a finite number of inference rules. And it ends with a
final statement, the “truth.” All these finiteness requirements are there to ensure
the reproducibility of the proof in a finite time and manner. A classical algorithm
is a particular case of such a type of proof, with input being (part of) the axioms
and output the final “truth.”

Deutsch and some others (Deutsch, 1977; Deutsch et al., 2000) see such a
classical proof/algorithm as an object, static with intermediate records. On the
other hand and in contrast, quantum algorithms are seen as dynamical processes
wherein the intermediate “steps” cannot be recorded without destroying the in-
terference and thus the algorithms themselves. The intermediate quantum “steps,”
as a matter of fact, cannot be even made out as clearly defined, discrete steps,
expressible in terms of classical propositions.

The requirement of finiteness of the number of intermediate steps in a classical
proof is no longer relevant (and unobtainable in a quantum proof anyway) if
consistency is maintainable and reproducibility is achievable in quantum “proofs.”

For such quantum proofs to be credible, they must be consistent: a statement
and its negation cannot be proved at the same time under the same conditions.
In basing the notion of proof on the physical reality, the condition of consistency
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should be automatically and implicitly guaranteed, for after all there is only one
reality—or at most one which we can perceive. Signs of inconsistency would not
be pointing to something intrinsic of the reality, but would be only because of our
perception or understanding of reality. In other words, inconsistency, as we see
it, cannot refute the reality; it only hints that it is time we need a new theory of
Nature, which in turn may or may not affect the “proof.”

For such quantum proofs to be of some usefulness, they must be repoducible:
reproducible in a finite duration of time, reproducible at different locations, and
reproducible at different times. The latter two requirements are ensured by the
principles of invariance under spatial and temporal translations, which are some
of the most cherished physical principles. These principles can be tested, and
have been tested extensively to the highest accuracy without any failures, via their
consequences in the conservation of energy and linear momentum.

But can they, the quantum proofs, be acceptable as proofs? We would prefer
an affirmative answer even though the answer to this question might only be a
matter of taste.

It should be easier to accept a quantum process a proof if the end result
of the quantum process can be verified by classical means—for instance, in a
factoring problem, the obtained primes can be easily multiplied together to give
back the original number as a check. Similarly, a quantum process should also
be acceptable as a valid proof even if such direct verification cannot be carried
out as a matter of principle but the result somehow can be verified indirectly
through some other (physical or mathematical) handles. This is the case of our
algorithm for Hilbert’s tenth problem above where we only need to verify that
some state is indeed the ground state, a physical attribute only indirectly linked to
the mathematical solutions sought.

Pushing the limit even further, the authors whose quotation is quoted at the
beginning of this article have also argued that even when, as a matter of principle,
there is no direct or indirect verification possible, quantum process should still
be considered as valid means of proof, simply because of “our acceptance of the
physical laws underlying the computing operations.”

5. CONCLUDING REMARKS

In this paper we review the important characters of Quantum Principles and
put forward the arguments that these physical principles may help compute some
of the recursively noncomputable. We also outline a recently proposed quantum
algorithm for the Hilbert’s tenth problem, and emphasize the key role of probability
distributions in the solution verification, of a physical nature, for this recursively
noncomputable problem.

It remains to be seen if and when the quantum algorithm can be physically
realized. If not prohibited by any physical principles, and we know none so far,
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then we trust that it can be implementable and will be realizable. Whatever the
case it may turn out to be, our investigation has already opened up new and
interesting directions for Mathematics itself. Our quantum algorithm has inspired
a reformulation of the Hilbert’s tenth problem, a problem in the domain of the
discrete integers, in terms of a set of infinitely coupled differential equations over
continuous variables Kieu (2001c). This may lead to new insights and/or solution
of the problem. (Recalled that, despite the mathematical noncomputability of
Hilbert’s tenth problem, there does exist a general procedure to decide whether
any given polynomial with many unknowns and real (continuous) coefficients has
real solutions or not Tarski, 1951).

Our decidability study here in the framework of Quantum Mechanics only
deals with the property of being Diophantine, which does not cover the property of
being arithmetic in general (which could involve unbounded number of universal
quantifiers).
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